
Determinism in Connect 4 using Monte Carlo Tree
Search

Ebenezer Lobe Boyom
Departments of Mathematics, Computer Science

Stanford University
Stanford, CA

twiggy20@stanford.edu

Romeo Garcia Jr.
Department of Mechanical Engineering

Stanford University
Stanford, CA

rgj0@stanford.edu

Esteban Barrero-Hernandez
Department of Computer Science

Stanford University
Stanford, CA

ejbh24@stanford.edu

Abstract—The strategic depth of board games has long chal-
lenged the development of artificial intelligence, culminating in
groundbreaking applications like Google DeepMind’s AlphaGo,
which utilized Monte Carlo Tree Search (MCTS) to achieve
unprecedented success in Go. This study extends the exploration
of MCTS to the realm of Connect 4, a game known for its
strategic complexity despite simpler rules compared to Go. We
implemented MCTS in a simulated Connect 4 environment,
examining its effectiveness against various opponents, including
an algorithm making random moves, the algorithm competing
against itself, and human players. The results underscore MCTS’s
robustness in game decision-making, reflecting a performance
that not only surpasses random strategies but also offers sig-
nificant challenge to human strategies. This research not only
demonstrates the versatility of MCTS in different strategic
contexts but also echoes its potential for broader applications
in complex decision-making scenarios, reminiscent of its historic
success in AlphaGo.

Index Terms—Monte Carlo Tree Search, Connect 4, Game
Strategy, Artificial Intelligence, Heuristic Algorithms, Board
Game Analysis, Computational Game Theory

I. INTRODUCTION

Connect 4 is a two-player connection game in which players
alternately drop colored discs into a seven-column, six-row
vertically suspended grid. The objective is to be the first to
form a horizontal, vertical, or diagonal line of four of one’s
own discs. Connect 4 is a solved game, with a perfect play
from both players leading to a draw, assuming the first player
starts in the center column. The simplicity of the rules of
Connect 4, coupled with the complexity of its strategic depth,
makes it an ideal subject for AI and game theory research.
It presents a clear case of a zero-sum game with finite possi-
bilities, which can be fully mapped out to determine optimal
strategies. This mapping can be represented as a decision tree
that AI algorithms can traverse. The study of such decision-
making processes in games can be extended to complex real-
world problems where similar strategic interaction is required.

AI’s role in strategic decision-making is pivotal in an era
where data-driven and automated systems are prevalent. In
games, AI must evaluate the current state, predict potential out-
comes, and make decisions that maximize chances of success.
Similarly, in business, military, and other domains, AI systems
analyze vast amounts of information to identify patterns, pre-
dict future trends, and make decisions that align with strategic

goals. The adaptability of AI in uncertain environments and
its ability to process information faster than humans make it
a valuable asset in strategic decision-making. AI can consider
more variables and potential outcomes than a human, often
leading to more informed and objective decisions. MCTS is a
heuristic search algorithm for some decision processes, most
notably in game play. MCTS combines the classical tree search
with random sampling of the search space. It builds a search
tree incrementally and evaluates the moves based on random
simulations of entire games. The significance of MCTS in AI
research lies in its flexibility and efficacy. Unlike traditional
search algorithms that require extensive domain knowledge to
prune the search tree effectively, MCTS adapts to the available
information dynamically, allowing it to be applied to a wide
range of problems without substantial customization. This
aspect is particularly useful in games with large state spaces or
when the decision model is not fully known. MCTS has been
successfully applied to complex games such as Go, where its
use in programs like AlphaGo has defeated world champions.
The application of MCTS goes beyond games, extending
to real-world problems such as planning, and optimization.
Its importance in AI research is underscored by its balance
between exploration (trying new possibilities) and exploitation
(using known information), a fundamental concept in AI and
machine learning.

PROBLEM STATEMENT

Deterministic, perfect information games, such as Connect
4, present a unique set of challenges in the field of AI and
computational game theory. In these games, the entire state
of the game is known to all players, and there is no element
of chance involved in determining the outcome of any given
play. This total transparency requires strategies that are both
comprehensive and exhaustive in nature. The challenge in
finding efficient strategies lies in the vastness of the decision
tree that represents all possible moves and countermoves. For
Connect 4, although the game is theoretically solvable, the
number of potential game states is enormous—on the order
of trillions [3]. This makes it computationally infeasible to
explore every possible state to find an optimal strategy using
brute force methods. Moreover, as players alternate turns, each
decision must not only consider the current move’s immediate

twiggy20@stanford.edu
rgj0@stanford.edu
ejbh24@stanford.edu


impact but also its longer-term implications. This foresight
requires deep lookahead capabilities and sophisticated evalua-
tion functions to assess non-terminal game states. Given these
complexities, AI algorithms must be both smart in pruning the
decision tree and efficient in evaluating game states. This is
where heuristic approaches, like MCTS, become valuable as
they offer a more practical solution compared to exhaustive
search methods.

II. LITERATURE REVIEW

MCTS has been a game-changer in the realm of AI,
particularly for games. It gained significant attention after
its successful application in computer Go, where traditional
algorithms like minimax and alpha-beta pruning were less
effective due to the vast complexity and high branching factor
of the game [6]. MCTS was pivotal in the development of
AlphaGo, the program that famously defeated world champion
Go player Lee Sedol.

Since its inception, MCTS has been applied to a variety
of games, showcasing its versatility and effectiveness. Some
notable examples include:

A. Board Games:

Apart from Go, MCTS has been employed in other classic
board games such as Chess and Shogi, where it has been used
to enhance the play of existing AI or create entirely new AI
players [8].

B. Real-time Strategy Games:

Games like ’Starcraft’ pose a significant challenge due to
their real-time nature and the requirement to manage resources,
build units, and conduct combat simultaneously [5]. MCTS
helps in managing the overwhelming number of decisions that
need to be made in a short amount of time.

C. Card Games:

In games with hidden information and significant chance
elements, like Poker, researchers have adapted MCTS to work
in the presence of uncertainty [10]. It has also been applied
to more complex card games like “Magic: The Gathering,”
demonstrating its ability to handle incomplete information and
make probabilistic inferences [9].

Over time, MCTS has been optimized for different games
through various enhancements. Techniques like Rapid Action
Value Estimation (RAVE), Progressive Bias, and domain-
specific heuristics are used to improve the performance of
MCTS []. Additionally, researchers have explored paralleliza-
tion to allow MCTS to perform more simulations within
the same time frame, thereby increasing its decision-making
quality [6]. The adaptability and success of MCTS in diverse
gaming environments underscore its significance in AI re-
search, highlighting its potential to solve complex decision-
making problems in other domains as well.

III. METHODOLOGY

The Connect4 game is simulated using a class. The grid
is represented by a 7-column, 6-row matrix, initialized to
an empty state of all 0s. Players, identified as 1 and 2,
take turns placing their discs in the grid. There is a set of
validPlays, which represents the columns that have yet to be
filled. The player who makes the first play is chosen randomly,
and currPlayer keeps track of which player’s turn it is. The
prevPlay tuple also records the most previous play made.
Given a column, the function makePlay makes a play and
updates the grid. makeHumanPlay allows a human user to
input a column (1-7) and make a play, and makeRandomPlay
allows a random agent to make a play. After each turn, the
function swapPlayers, updates whose turn it is. To check if a
player has won after taken a turn, the function fourInARow
is called to check if there are 4 consecutive chips placed
by the same player anywhere in the grid. prevPlay tells us
which player made said winning play. If no one has won, the
gridFilled function checks if the game has ended is a tie, a
situation in which all the columns have been filled before a
player wins. Finally, drawBoard visually represents the game
board. A detailed implementation of the MCTS algorithm
used in this study, along with the simulation environment for
Connect 4, can be found in our GitHub repository at Connect4-
MCTS .

A. Mathematical Foundation of MCTS

MCTS balances exploration and exploitation through four
key phases: Selection, Expansion, Simulation, and Backprop-
agation.

The selection phase involves navigating through the tree
from the root node to a leaf node using a policy that balances
exploration and exploitation [1]. This is typically achieved
using the Upper Confidence Bound applied to Trees (UCT)
algorithm. The UCT value of a node is calculated using the
formula:

UCT =
wi

ni
+ c

√
lnNi

ni
(1)

where wi is the number of wins after the i-th move, ni is the
number of simulations after the i-th move, Ni is the total
number of simulations after the parent node, and c is the
exploration parameter [1].

Monte Carlo Tree Nodes: The ActionNode class represents
a node in the Monte Carlo tree. Each node is associated with a
specific action taken in the game and points to its parent node,
reflecting the game’s sequential nature. For each actionNode,
the class records the number of visits, Nsa, and the total reward
value accumulated from simulations, Q. The getNodeValue
function calculates the node’s value using the UCB1 heuristic,
balancing exploration of less-visited nodes and exploitation
of nodes with high rewards. AddChildNodes allows multiple
child actions nodes, representing possible actions to be taken
after the current node, to be added simultaneously for explo-
ration.

Monte Carlo Search Algorithm: The MonteCarlo class
encapsulates the MCTS algorithm. It selects nodes to explore,

https://github.com/twiggy24/Connect4-MCTS
https://github.com/twiggy24/Connect4-MCTS


simulates game outcomes from those nodes, and updates the
tree with the results of these simulations. The selectActionN-
ode function guides the tree’s expansion and selection process,
choosing the next action based on the UCB1 value. Nodes with
higher UCB1 values are prioritized for exploration. This step
ensures a balance between exploring new moves and exploiting
known advantageous moves. In the performMonteCarloSearch
function, numerous game scenarios are played out randomly,
with the outcomes informing the update of node values in
the tree. Each simulated game’s results are back-propagated,
refining the visit counts and reward values of the nodes. This
process continues until the time limit is reached. The killer-
Move function determines the best move to make from the
current game state by selecting the action node with the highest
visit count, indicating the most promising move according to
the algorithm’s simulations. Finally, the play function updates
the tree accordingly when a play is performed.

IV. EXPERIMENT SETUP

In our experiments, we tested the performance of the MCTS
algorithm in the game of Connect4. We devised three dis-
tinct experimental scenarios. First, we, human players, played
against an AI 5 times, where the AI’s decision-making process
was powered by MCTS with a specified search time. In
this setup, the human player interacted through a function
allowing them to input their chosen column, while the AI
utilized MCTS to determine its moves. The search time started
low in the first game and increased each game, increasing
the difficulty for the human players. Second, we created a
scenario where the AI, again using MCTS, competed against
a random algorithm, automated agent making non-strategic,
random moves, contrasting strategic AI behavior. We also ran
this scenario 5 times such that the the search time is increased
each game, making the AI agent better. Finally, we set up a
duel between two AIs, both using MCTS but with differing
search time constraints, to explore how varying the depth and
breadth of the search impacted the AI’s gameplay strategy and
effectiveness. We ran 5 games, experimenting with different
search times for both AI agents.

V. RESULTS

The data from Table 1 details the outcomes of Connect 4
games between a human and an AI using MCTS. The AI’s
decision-making time varied, with the human winning when
the AI had less time (0.01 to 2 seconds) and the AI winning as
its time increased (5 to 15 seconds). This suggests that the AI’s
performance improves with longer search times, allowing for a
more thorough exploration of potential moves. The final board
visuals provide insight into the strategic plays, with the AI’s
victories in longer searches indicating its enhanced capability
to devise winning strategies. Essentially, the results highlight
the effectiveness of MCTS in scaling the AI’s performance
with increased search time, offering valuable insights into
the AI’s potential to adapt and overcome human strategy in
strategic board games.

Fig. 1. Results of Human v. AI Trials

In Table 2, we observe the outcomes of Connect 4 games
between an AI and a randomly operating robot. The AI’s
search time, denoting the length of its decision-making pro-
cess, varied from an extremely rapid 0.0001 seconds to a
slower 5 seconds across five trials. Interestingly, the random
robot won the first game with the AI’s quickest decision
time. However, as the AI was afforded more time—from
0.05 to 5 seconds—it consistently won the remaining games.
The increase in AI search time correlates with a transition
from a single loss to consecutive victories, suggesting that
even minimal additional processing time can significantly
bolster the AI’s performance against a non-strategic, random
opponent. The final boards illustrate the culmination of each
game, with the AI’s winning sequences becoming apparent
as the search time lengthened, demonstrating the effectiveness
of a more calculated approach compared to random moves.
These results highlight the importance of search time in the
AI’s ability to execute winning strategies and the comparative
advantage of algorithmic play over random moves in strategic
games.

Table 3 presents the results of Connect 4 games where two
different AIs competed against each other, with each AI having
varying search times to decide on moves. The trials show that
neither consistent speed nor slower deliberation guarantees
victory. The final board states depicted in the table suggest
that the winning AI in each trial may have employed a more
effective strategy or been better at adapting to its opponent’s
moves. These results could imply that while search time is
a factor in an AI’s performance, the efficiency of the search
algorithm and the quality of the heuristic evaluation function
might play more decisive roles in determining the winner in
AI vs. AI games.



Fig. 2. Results of Randomized Bot v. AI Trials

Fig. 3. Results of AI v. AI Trials

VI. DISCUSSION

Table 3 presents the results of Connect 4 games where two
different AIs competed against each other, with each AI having
varying search times to decide on moves. The trials show that
neither consistent speed nor slower deliberation guarantees
victory. For instance, in the first trial, AI 2 with a slightly
longer search time of 0.03 seconds won over AI 1 with 0.01
seconds. However, as the search times increased for both AIs,
the outcomes did not follow a consistent pattern favoring the
AI with the longer search time; AI 1 won trials 3 and 4 with
one more second of search time compared to AI 2. By the
fifth trial, with the longest search times of 15 seconds for AI
1 and 16 seconds for AI 2, AI 1 emerged victorious. The final
board states depicted in the table suggest that the winning AI in
each trial may have employed a more effective strategy or been
better at adapting to its opponent’s moves. These results could
imply that while search time is a factor in an AI’s performance,
the efficiency of the search algorithm and the quality of the
heuristic evaluation function might play more decisive roles
in determining the winner in AI vs. AI games.

Morevoer, MCTS has emerged as a formidable algorithm
in the realm of decision-making processes, particularly in
games such as Go, Chess, and Connect 4 [4]. Its application
in Connect 4 reveals a myriad of strengths and weaknesses,
offering valuable insights into its broader applicability in
strategy games and real-world scenarios.

The primary strengths of MCTS in Connect 4 include its
adaptive approach to search space exploration, which negates
the need for exhaustive examination of all possible moves.
This adaptive nature, coupled with its independence from
domain-specific heuristics, enables MCTS to effectively learn
and apply strategies in Connect 4 without extensive game-
specific programming. The algorithm’s capability to balance
exploration with exploitation is crucial for adapting strategies
in response to an opponent’s moves, while its scalability and
flexibility allow for improved decision-making with increased
computational resources.

However, MCTS is not without its drawbacks. The al-
gorithm can be computationally intensive, necessitating nu-
merous simulations for optimal decision-making, which may
result in slower response times, especially on limited hardware.
Additionally, MCTS may struggle in endgame scenarios of
Connect 4, where long-term strategic planning is essential,
due to its focus on short-term probabilistic decision-making.

The implications of MCTS in the field of strategy games
are significant. Its adaptability makes it an ideal candidate for
developing AI in various strategy games, providing human-like
decision-making capabilities. Beyond gaming, MCTS holds
potential in real-world applications such as robotic motion
planning, financial forecasting, and optimization problems,
where its strengths in handling uncertain scenarios and adap-
tive learning could be particularly beneficial.

Future advancements and optimization of MCTS are poised
to further enhance its effectiveness. Integrating MCTS with
machine learning techniques, such as neural networks, could
improve performance in learning from past games and pre-
dicting opponent moves. Adjustments in the algorithm’s
exploration-exploitation balance and simulation processes can
lead to more efficient decision-making. Moreover, leveraging
parallel processing could significantly reduce computational
time, making MCTS more viable for real-time applications.
While MCTS demonstrates significant promise in strategy
games like Connect 4, its potential in diverse real-world
applications continues to be an exciting avenue for exploration
and innovation.

VII. CONCLUSION

In conclusion, the series of trials conducted to evaluate the
performance of two distinct AIs in the context of the strategic
game Connect 4 reveal that the relationship between an AI’s
search time and its success is not linear or straightforward.
While one might intuitively expect that longer search times
would consistently yield better performance, the data indicates
that other factors, such as the efficiency of the search algorithm
and the quality of the heuristic evaluations, are equally, if not
more, influential in determining the outcome of the games. The



varying results underscore the need for a nuanced approach
to AI development, where the focus should be placed on
the balance between search time and the effectiveness of the
decision-making processes. This insight is particularly relevant
for advancing AI capabilities in real-world applications, where
strategic and timely decisions are paramount. The findings
from these trials contribute to our understanding of AI behav-
ior and point towards the importance of algorithmic quality
and adaptability in competitive AI systems.

REFERENCES

[1] M. Kochenderfer, T. Wheeler, and K. Wray, “Algorithms for Decision
Making”, 1st ed. Cambridge, MA: The MIT Press, August 16, 2022.

[2] G. B. Holt, ”ch09.py,” GitHub repository, decisionmaking-
code-py, src/ch09.py, 2023. [Online]. Available:
https://github.com/griffinbholt/decisionmaking-code-
py/blob/main/src/ch09.py. [Accessed: 12-08-2023].

[3] S. Edelkamp and P. Kissmann, ”Symbolic Classification of General Two-
Player Games,” in KI 2008: Advances in Artificial Intelligence, A.R.
Dengel, K. Berns, T.M. Breuel, F. Bomarius, and T.R. Roth-Berghofer,
Eds., vol. 5243, Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2008. https://doi.org/10.1007/978-3-540-85845-4 23

[4] S. Takeuchi, ”Comparison of Search Behaviors in Chess, Shogi, and
the game of Go,” 2022 International Conference on Technologies and
Applications of Artificial Intelligence (TAAI), Tainan, Taiwan, 2022, pp.
183-188, doi: 10.1109/TAAI57707.2022.00041.

[5] D. Soemers, ”Tactical Planning Using MCTS in the Game of Star-
Craft,” Doctoral dissertation, Department of Knowledge Engineering,
Maastricht University, 2014.

[6] A. Liu, Y. Liang, J. Liu, G. Van den Broeck, and J. Chen, ”On Effective
Parallelization of Monte Carlo Tree Search,” 2020, arXiv:2006.08785
[cs.LG].

[7] M. Świechowski, K. Godlewski, B. Sawicki, et al., ”Monte Carlo Tree
Search: a review of recent modifications and applications,” Artificial
Intelligence Review, vol. 56, pp. 2497–2562, 2023. [Online]. Available:
https://doi.org/10.1007/s10462-022-10228-y

[8] S. Takeuchi, ”Comparison of Search Behaviors in Chess, Shogi, and the
game of Go,” in 2022 International Conference on Technologies and
Applications of Artificial Intelligence (TAAI), Tainan, Taiwan, 2022,
pp. 183-188, doi: 10.1109/TAAI57707.2022.00041.

[9] P. I. Cowling, C. D. Ward, and E. J. Powley, ”Ensemble Determiniza-
tion in Monte Carlo Tree Search for the Imperfect Information Card
Game Magic: The Gathering,” in IEEE Transactions on Computational
Intelligence and AI in Games, vol. 4, no. 4, pp. 241-257, 2012.

[10] G. Van den Broeck, K. Driessens, and J. Ramon, ”Monte-Carlo Tree
Search in Poker Using Expected Reward Distributions,” in Advances
in Machine Learning: First Asian Conference on Machine Learning,
ACML 2009, Nanjing, China, November 2-4, 2009. Proceedings 1,
Springer Berlin Heidelberg, 2009, pp. 367-381.


	Introduction
	Literature Review
	Board Games:
	Real-time Strategy Games:
	Card Games:

	Methodology
	Mathematical Foundation of MCTS

	Experiment Setup
	Results
	Discussion
	Conclusion
	References

